variance
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
status
Service types
-
Global Ocean-Gridded objective analysis fields of salinity using profiles from the reprocessed in-situ global product CORA (INSITU_GLO_TS_REP_OBSERVATIONS_013_001_b) using the ISAS software. Objective analysis is based on a statistical estimation method that allows presenting a synthesis and a validation of the dataset, providing a validation source for operational models, observing seasonal cycle and inter-annual variability.
-
Global Ocean-Gridded fields of temperature in the water colum. he product is based on the Coriolis Ocean database for ReAnalysis CORA (INSITU_GLO_TS_REP_OBSERVATIONS_013_001_b). Developed by OCEANSCOPE for CMEMS (INSITU_GLO_PHY_TS_OA_MY_013_052). Downstreamed by ETT for EMODnet Physics. - https://doi.org/10.48670/moi-00038
-
The data set consists of real-time continuous coastal ocean surface current maps in the Ibiza Channel (Western Mediterranean) averaged over a time interval of 1 hour around the cardinal hour, measured by the coastal High-Frequency Radars installed. Surface ocean velocities estimated by HF Radar are representative of the upper 0.9 meters of the ocean for a central frequency of 13.5 MHz.
-
The data set consists of maps of total velocity of the surface current in the Skagerrak Strait averaged over a time interval of 1 hour around the cardinal hour. Surface ocean velocities estimated by High Frequency (HF) Radar are representative of the upper 0.3-2.5 meters of the ocean.
-
The data set consists of maps of total velocity of the surface currents in the German Bight. Surface ocean velocities estimated by High Frequency (HF) Radar are representative of the upper 0.3-2.5 meters of the ocean.
-
The data set consists of maps of total velocity of the surface current in the in Ebro River Delta (SE Spain) averaged over a time interval of 1 hour around the cardinal hour. Surface ocean velocities estimated by High Frequency (HF) Radar are representative of the upper 0.3-2.5 meters of the ocean.
-
The data set consists of maps of total velocity of the surface current along the Finnmark coast averaged over a time interval of 1 hour around the cardinal hour. Surface ocean velocities estimated by High Frequency (HF) Radar are representative of the upper 0.3-2.5 meters of the ocean.
-
The data set consists of near-real time surface ocean velocity in the North-East coast of Gran Canaria averaged over a time interval of 1 hour around the cardinal hour. Surface ocean velocities estimated by High Frequency (HF) Radar are representative of the upper 0.5 meters of the ocean. Total velocities are derived using least square fit that maps radial velocities measured from individual sites onto a cartesian grid. The final product is a map of the horizontal components of the ocean currents on a regular grid in the area of overlap of two radar stations, one located at PLOCAN on shore facilities and the other at Las Palmas harbour.
-
Surface ocean velocities estimated from High Frequency (HF)-Radar are representative of the upper 2.4 meters of the ocean. The main objective of near-real time processing is to produce the best product from available data at the time of processing. Radial velocity measurements are obtained from individual radar sites through the U.S. HF-Radar Network. Hourly radial data are processed by unweighted least squares on a 6km resolution grid of the Alaskan North Slope to produce near real-time surface current maps.
-
The data set consists of maps of total velocity of the surface current in the in the strait of Gibraltar averaged over a time interval of 1 hour around the cardinal hour. Surface ocean velocities estimated by High Frequency (HF) Radar are representative of the upper 0.3-2.5 meters of the ocean.